The Department of Computer Science at UNC Greensboro has a small but active faculty in a variety of research areas, with well-regarded work that has appeared in leading journals and conferences. The list below is organized by expertise in broad, traditional areas of computer science, and the faculty profiles that follow give more detailed information. For more research labs and publications, see https://compsci.uncg.edu/research/faculty/

Algorithms and Theory of Computing
- Stephen R. Tate

Artificial Intelligence
- Nancy Green

Bioinformatics
- Prashanti Manda

Data Science and Machine Learning
- Prashanti Manda
- Sonya Mohanty
- Minjeong Kim
- Shan Suthaharan

Database Systems
- Lixin Fu
- Fereidoon Sadri

Extended Reality
- Regis Kopper

Image Processing
- Minjeong Kim

Networking
- Jing Deng
- Shan Suthaharan

Online Social Networks
- Jing Deng
- Lixin Fu
- Fereidoon Sadri

Security and Cryptography
- Jing Deng
- Shan Suthaharan
- Stephen R. Tate

Primary Research Areas

Lixin Fu

Primary Research Areas: Databases, Data Warehousing, and Data Mining

Brief Overview: In data warehousing, a large amount of data from different sources are extracted, cleansed, and integrated into a large storage area. There are a lot of research activities that involve this backend of warehousing, and Prof. Fu’s research focuses on the front-end, investigating issues such as representation and efficient algorithms for complicated queries. Prof. Fu has successfully designed several efficient data cube algorithms.

Prof. Fu is investigating combining data mining and data cube, two important fields, resulting in an integrated information system that has more efficiency and capabilities. Initial results such as classification and clustering on data cubes are promising. Dr. Fu works on delivery networks, social networks, and recommendation algorithms. In particular, he is interested in the structure and dynamic features of social networks and in community clustering.

Minjeong Kim

Primary Research Areas: Biomedical Image Analysis, Image Processing, Machine/Deep Learning for imaging data, Brain connectome

Other Expertise: Computational Neuroscience

Brief Overview: Dr. Kim’s research interests are mainly in developing cutting-edge image analysis methods for the interdisciplinary field between computer science and biomedicine. Imaging data has become the most powerful tool in biomedicine due to the advancement of high-resolution imaging technology and the increasing variety of imaging modalities. She aims to apply state-of-the-art computer science technologies, for example, machine/deep learning, pattern recognition, computer vision, visualization, and graph theory, to various clinical and preclinical research imaging data to study biomedical fundamentals from computer scientists’ view. Such techniques can be adapted to healthcare practices and biomedical research for automated image reading/quantification, computer-assisted diagnosis at an earlier time as well as predictive modeling for clinical outcome.

Jing Deng

Primary Research Areas: Online Social Networks, Wireless Networks, and Network Security

Other Expertise: Information Assurance, Network Fairness

Brief Overview: Prof. Deng’s research is focused on efficient and secure algorithms for online social networks and wireless networks. There are mainly two issues in these networks, especially resource constrained ones: First, how can the information be efficiently delivered from source to destination? Secondly, how secure can such information delivery be when there are node failures, compromise, and captures? In recent research, Prof. Deng has worked on medium access control in wireless networks, information delivery in wireless sensor networks, key establishment in wireless networks, and secure routing in mobile networks.

Regis Kopper

Primary Research Areas: Extended Reality Interfaces, Virtual Reality, Augmented Reality, Human-Centered Design, Human-Computer Interaction

Brief Overview: Dr. Kopper’s research centers around extended reality (XR) user experience, Virtual Reality (VR) simulation and applied XR research. Specifically, he works on improving the usability of virtual and augmented reality systems by designing novel interaction techniques, mitigating visually induced motion sickness and integrating tangible devices onto XR user interfaces. On virtual reality simulation, Dr. Kopper works on the design, VR prototyping and evaluation of next generation user interfaces for the assessment of technology that is not yet available in the market, particularly in the public safety domain. His research is also transdisciplinary and collaborative, where he investigates the employment of XR interfaces in areas such as health care, neuroscience, and the humanities.
Prashanti Manda

Primary Research Areas: Bioinformatics, Natural Language Processing, Ontologies

Other Expertise: Semantic Similarity, Machine Learning, Data Mining

Brief Overview: Prof. Sadri’s research has included work in modeling and management of uncertain information in database systems, addressing the handling of inaccurate information in databases. Data is often uncertain, in particular when it is obtained by means of data mining and automated information extraction. Prof. Sadri has developed an approach which is based on solid mathematical probability theory for the representation of inaccurate data and query processing for uncertain data. In other work, Prof. Sadri has investigated issues related to multi-database systems, developing powerful database query languages that allow data/metadata transformation (such as the pivot and unpivot operations), and studying query optimization for these languages. This research forms the basis for interoperability among multiple database systems with different schemas.

In Prof. Sadri’s work on information integration from multiple sources, he considers the need for scalable decentralized data sharing which arises naturally in a wide range of applications, including enterprise data management, scientific projects undertaken across universities or research labs in biology, astronomy, and other domains, and data sharing among governmental databases. We have developed a framework and have implemented a system for a simple, intuitive, and efficient user interface to query a possibly large number of information sources without any knowledge of data representation details in these sources.

Prof. Sadri’s most recent research has been on high-speed parallel processing of very large volumes of data using the “Map-Reduce” technique that was introduced by Google. In this approach, data is partitioned among large numbers (tens or even hundreds of thousands) of desktop computers that collectively process the data efficiently.

Suthaharan studies advanced mathematical, statistical, and computational techniques to formulate efficient machine learning models and algorithms that can help accomplish big data analytics research. His research includes the selection and optimization of hyperparameters of machine learning models using Bayesian analysis to make machine learning highly usable in big data analytics in interdisciplinary settings. Dr. Suthaharan is also interested in exploring software engineering models and designs to support big data analytics and machine learning research. One of his current and major research areas is in ophthalmic data science and machine learning.

Primary Research Areas: Cryptography and Computer Security

Other Expertise: Algorithms, Data Compression, and Theoretical Computer Science

Brief Overview: Prof. Tate’s recent research is focused on the following question: What additional capabilities are enabled when standard computing systems are augmented with simple secure hardware additions, such as the Trusted Platform Module being included in many current systems. In his recent research, Prof. Tate has shown how such augmented systems can be used to solve several problems that are provably impossible on standard systems, including realization of a “random oracle” and a non-interactive form of secure mobile agents.

Other recent projects have included new techniques for online/offline digital signatures (digital signatures in which most of the signature can be “pre-computed” before the message to be signed is known, followed by a super-efficient computation once the message is known), and intrusion detection techniques for encrypted protocols.